

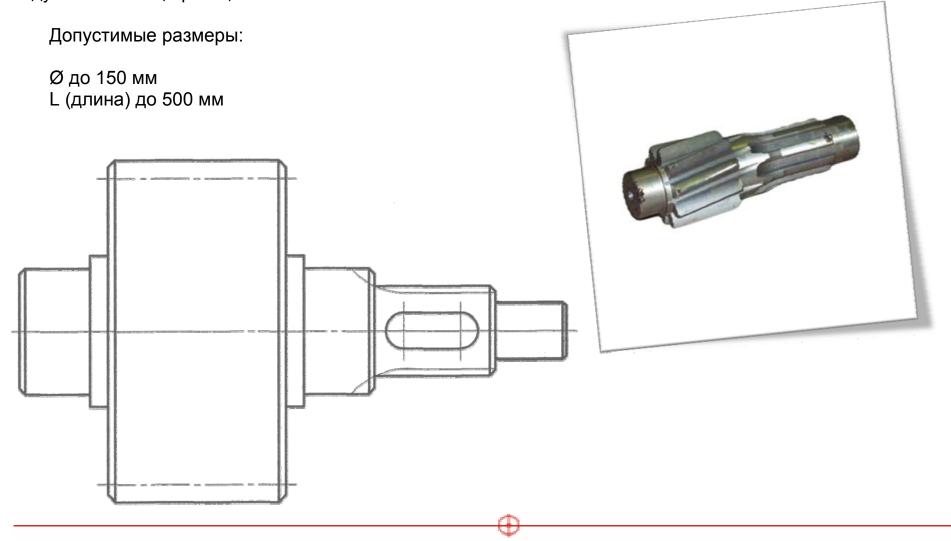
Мини-справочник механика

Содержание

Раздел I .	Основные механические элементы	стр. 3-16
Раздел II .	Механическое соединение элементов. Резьба	стр. 17-28
Раздел III .	Основные решения по механизации	стр. 29-30
Раздел IV .	Справочник металлопроката	стр. 31-43
Раздел V .	Наши контактные данные	стр. 44

Вступление

Вот уже более 15 лет Завод нестандартизированного оборудования "Универсал" занимает лидирующие позиции в сфере производства промышленного и нестандартизированного оборудования, средств малой механизации, сельскохозяйственной техники и потребительских металлоконструкций. С каждым годом мы увеличиваем объёмы и ассортимент производимой продукции, вместе с тем сохраняя высочайшее качество и надёжность.

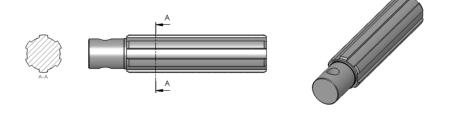

Мы предлагаем Вашему вниманию "Мини-справочник механика", в котором содержится информация о наших изделиях и механизмах, которые используется в сельском хозяйстве, а так же общие сведения о стали и прокатной продукции, резьбах, валах, шестернях и пр.

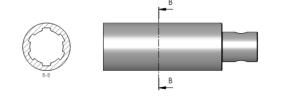
Настоящий справочник во многом основан на информации, содержащейся в Государственных стандартах Украины. Классификация и часть из определений справочника представлены в первую очередь с учётом интересов специалистов, на практике связанных с сельским хозяйством или обслуживанием сельскохозяйственных машин и механизмов. Другая же информация не носит строго научного характера, однако остаётся при этом важной и необходимой для профессионального использования.

Настоящий справочник — один из этапов развития сотрудничества с аграрным сектором. Мы работаем на рынке Украины с 1993 года. Приобретённый опыт позволяет нам постоянно совершенствовать и расширять предоставляемые услуги, налаживать новые контакты и укреплять старые партнёрские отношения.

Вал-шестерни

Завод нестандартизированного оборудования "Универсал" производит вал-шестерни серийно и по индивидуальным спецификациям.


Валы шлицевые и шпоночные

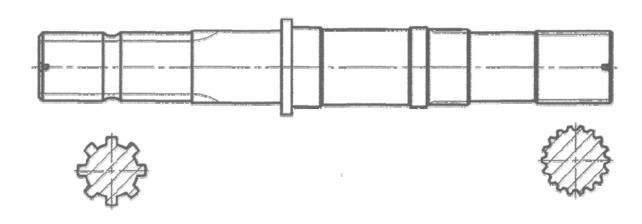

Шлицевое (зубчатое) соединение - соединение вала (охватываемой поверхности) и отверстия (охватывающей поверхности) с помощью шлицов (зубьев) и впадин (пазов) радиально расположенных на поверхности. Обладает большой прочностью, обеспечивает соосность вала и отверстия, возможностью осевого перемещения детали вдоль оси.

Классификация шлицевых соединений:

- 1. По форме профиля (шлицев) зубьев:
 - прямобочные;
 - эвольвентные;
 - треугольные.
- 2. По передаваемой нагрузке:
 - лёгкая серия;
 - средняя серия;
 - тяжёлая серия.
- 3. По способу центрирования сопрягаемых деталей:
 - по наружному диаметру зубьев;
 - по внутреннему диаметру зубьев;
 - по боковым поверхностям зубьев.
- 4. По степени подвижности:
 - подвижное;
 - нормальное;
 - неподвижное.

Шпоночное соединение — соединение охватывающей и охватываемой детали для передачи крутящего момента с помощью шпонки. Шпоночное соединение позволяет обеспечить подвижное соединение вдоль продольной оси.

В зависимости от формы шпонки соединения бывают:


- соединения призматическими шпонками;
- соединения клиновыми шпонками;
- соединения тангенциальными шпонками;
- соединения сегментными шпонками;
- соединения цилиндрическими шпонками;

Основной критерий работоспособности шпоночного соединения является прочность на смятие.

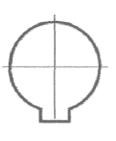
Завод нестандартизированного оборудования "Универсал" производит валы серийно и по индивидуальным спецификациям.

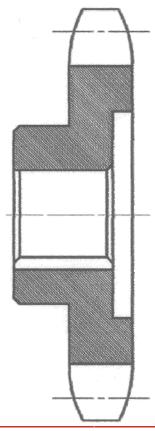
Допустимые размеры:

Ø до 150 мм L (длина) до 1300 мм

Звёздочки

Звёздочка — непременный компонент механической зубчатой передачи. Звёздочка служит для передачи вращательного движения между валами которые могут иметь параллельные, пересекающиеся и скрещивающиеся оси.


Завод нестандартизированного оборудования "Универсал" производит звёздочки серийно и по индивидуальным спецификациям.


Допустимые параметры:

Шаг: 12,7 - 50,4 мм

Ø до 800 мм

Зубчатые колёса

Зубча́тое колесо — основная деталь зубчатой передачи в виде диска с зубьями на цилиндрической или конической поверхности, входящими в зацепление с зубьями другого зубчатого колеса. В машиностроении принято малое ведущее зубчатое колесо независимо от числа зубьев называть *шестернёй*, а большое ведомое — колесом. Однако часто все зубчатые колёса называют шестерня́ми.

Зубчатые колёса обычно используются па́рами с разным числом зубьев с целью преобразования вращающего момента и числа оборотов вала на выходе. Колесо, к которому вращающий момент подводится извне, называется ведущим, а колесо, с которого момент снимается — ведомым. Если диаметр ведущего колеса меньше, то вращающий момент ведомого колеса увеличивается за счёт пропорционального уменьшения скорости вращения, и наоборот.

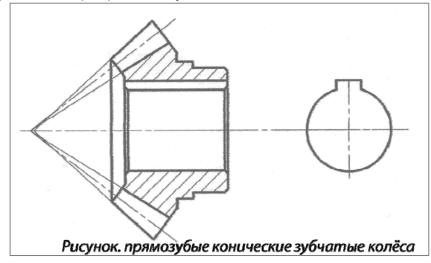
Следует заметить, что зубчатая передача не является усилителем механической мощности, так как общее количество механической энергии на её выходе не может превышать количество энергии на входе. Это связано с тем, что механическая работа в данном случае будет пропорциональна произведению вращающего момента на скорость вращения. В соответствии с передаточным отношением, увеличение кру-

тящего момента будет вызывать пропорциональное уменьшение угловой скорости вращения ведомой шестерни, а их произведение останется неизменным. Данное соотношение справедливо для идеального случая, не учитывающего потери на трение и другие эффекты, характерные для реальных устройств.

Боковая форма профиля зубьев колёс для обеспечения плавности качения может быть: эвольвентой, неэльвовентной передача Новикова (с одной и двумя линиями зацепления), циклоидальной. Кроме того, в храповых механизмах применяются зубчатые колеса с несимметричным профилем зуба.

Прямозубые колёса

Прямозубые колёса — самый распространённый вид зубчатых колёс. Зубья являются продолжением радиусов, а линия контакта зубьев обеих шестерён параллельна оси вращения. При этом оси обеих шестерён также должны располагаться строго параллельно.


Косозубые колёса

Косозубые колёса являются усовершенствованным вариантом прямозубых. Их зубья располагаются под углом к

оси вращения, а по форме образуют часть спирали. Зацепление таких колёс происходит плавнее, чем у прямозубых, и с меньшим шумом.

Недостатками косозубых колёс можно считать следующие факторы:

• при работе косозубого колеса возникает механический момент, направленный вдоль оси, что вызывает необходимость применения для установки вала упорных подшипников;

• увеличение площади трения зубьев (что вызывает дополнительные потери мощности на нагрев), которое компенсируется применением специальных смазок.

В целом, косозубые колёса применяются в механизмах, требующих передачи большого крутящего момента на высокой скорости, либо имеющих жёсткие ограничения по шумности.

Колёса с круговыми зубьями

Передачи на основе колёс с круговыми зубьями имеют ещё более высокие ходовые качества, чем косозубые — высокую плавность и бесшумность работы. Однако они ограничены в применении сниженными, при тех же условиях, КПД и ресурсом работы, такие колёса заметно сложнее в производстве. Линия зубьев у них представляет собой окружность радиуса, подбираемого под определённые требования.

Двойные косозубые колёса (шевроны)

Двойные косозубые колёса решают проблему осевого момента. Зубья таких колёс изготавливаются в виде буквы «V» (либо они получаются стыковкой двух косозубых колёс со встречным расположением зубьев). Осевые моменты обеих половин такого колеса взаимно компенсируются, поэтому отпадает необходимость в установке осей и валов в специальные подшипники. Передачи, основанные на таких зубчатых колёсах, обычно называют «шевронными».

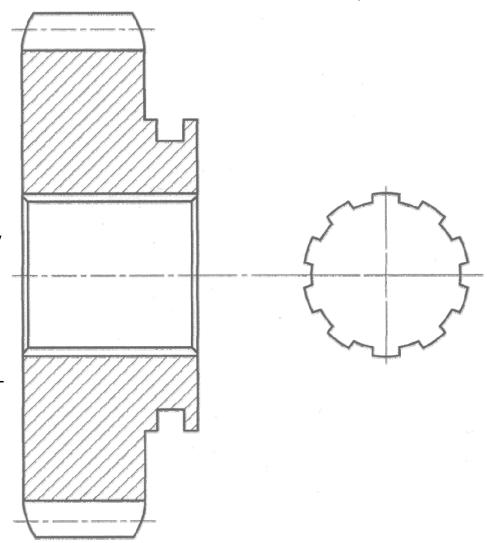
Зубчатые конические колёса

Кроме наиболее распространенных цилиндрических зубчатых колёс, применяются колёса конической формы. Конические колёса применяются там, где необходимо передать крутящий момент под определённым углом. Такие конические колёса с круговым зубом, например, применяются в автомобильных дифференциалах, используемых для передачи момента от двигателя к колёсам.

Секторные колёса

Секторное колесо представляет собой часть обычного колеса любого типа. Такие колёса применяются в

тех случаях, когда не требуется вращение механизма на 360°, и поэтому можно сэкономить на его габаритах.


Зубчатые колёса с внутренним зацеплением

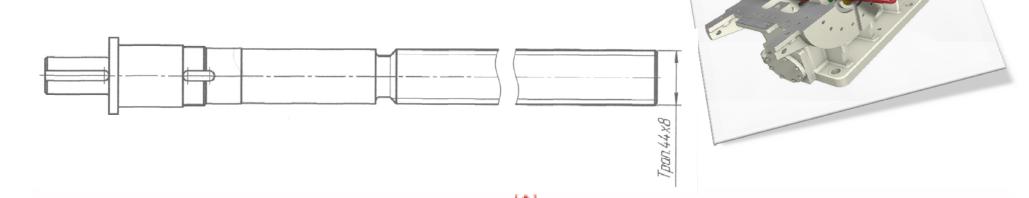
При жёстких ограничениях на габариты, в планетарных механизмах, в шестерённых насосах с внутренним зацеплением, в приводе башни танка, удобно применение колёс с зубчатым венцом, нарезанным с внутренней стороны. Также сто́ит заметить, что вращение ведущего и ведомого колеса направленно в одну сторону. В такой передаче меньше потери на трение, т.е. выше КПД

Завод нестандартизированного оборудования "Универсал" производит зубчате колёса любих типов (прямозубые, косозубые, червячные) серийно и по индивидуальным спецификациям.

Допустимые параметры:

Модуль: 1-8 Ø 9 - 800 мм

Ходовые винты: трапецеидальные, прямоугольные


Ходовой винт — один из элементов редуктора. *Редуктор (механический)* — механизм, преобразующий и передающий крутящий момент, с одной или более механическими передачами, обычно преобразующий высокую угловую скорость в более низкую. Редуктор со ступенчатым изменением угловой скорости называется коробкой передач, с бесступенчатым - вариатор. Характеризуется — КПД, передаточным отношением, передаваемой мощностью, максимальными угловыми скоростями

валов, количеством ведущих и ведомых валов, типом и количеством передач и ступеней. Редуктор, который преобразует низкую угловую скорость в более высокую обычно называют мультипликатором.

Завод нестандартизированного оборудования "Универсал" специализируется на производстве редукторов и комплектующих к ним. Наше предприятие имеет возможность производить ходовые винты трапецеидального и прямоугольного типа со следующими характеристиками:

Ø до 120 мм L (длина) до 2000 мм

Червяки цилиндрические (червячная передача)

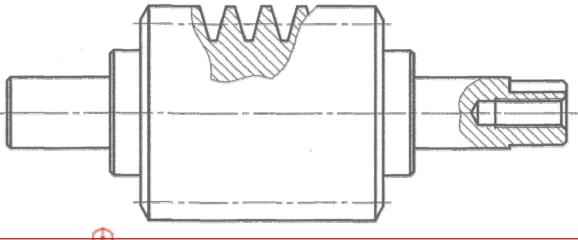
Червячная передача — это механическая передача, посредством червяка и сопряжённого с ним червячного колеса

Червяк представляет собой винт со специальной резьбой, обычно близкой к трапецеидальной. На практике обычно применяются однозаходные, двухзаходные и четырёхзаходные червяки.

Червячное колесо представляет собой зубчатое колесо, обычно с зубьями дуговой формы.

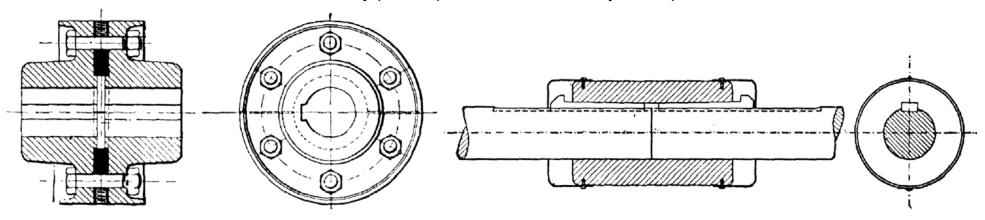
В технологических целях и в целях надёжности, червячное колесо обычно делают составленным из двух материалов: венец из дорогого антифрикционного материала (например из бронзы), а сердечник — из более дешёвых и прочных сталей или чугунов. Конструктивно, входной и выходной вал передачи перекрещиваются, обычно под прямым углом.

Червячная передача активно используется в червячном редукторе. В червячном редукторе увеличение крутящего момента и уменьшению угловой скорости выходного вала происходит за счет преобразования энергии, заключенной в высокой угловой скорости и низком крутящем моменте на входном валу. Двигатель со встроенным червячным редуктором называют червячным мотор-редуктором.


Наиболее распространены одноступенчатые червячные редукторы. При больших передаточных числах применяют либо двухступенчатые червячные редукторы, либо комбинированные червячно-зубчатые или зубчато-червячные редукторы. В одноступенчатых червячных редукторах червяк может располагаться под колесом, над колесом, горизонтально сбоку колеса и вертикально сбоку колеса. Выбор схемы червячного редуктора определяется требованиями компоновки. Червячные редукторы с нижним расположением червяка применяют при v1<5 м/с, с верхним - при v1>5 м/с. В червячных редукторах с боковым расположением червяка смазка подшипников вертикальных валов затруднена.

В червячных редукторах для повышения сопротивления заеданию применяют более вязкие масла, чем в зубчатых редукторах. При скоростях скольжения Vcк<7...10м/с смазку червячных передач редукторов осуществляют окунанием червяка или колеса в масляную ванну. При нижнем расположении червяка уровень масла в ванне должен проходить по центру нижнего шарика или ролика подшипника качения, а червяк должен быть погружен в масло примерно на высоту витка. Если уровень масла устанавливают по подшипникам и червяк не окунается в масло, то на валу червяка устанавливают маслоразбрызгивающие кольца (крыльчатки), которые и подают масло на червяк и колесо. В червячных редукторах Vcк>7... 10 м/с применяют циркуляционнопринудительную смазку, при которой масло от насоса через фильтр и холодильник подаётся в зону зацепления.

Завод нестандартизированного оборудования "Универсал" предлагает изготовить червяки цилиндриче-

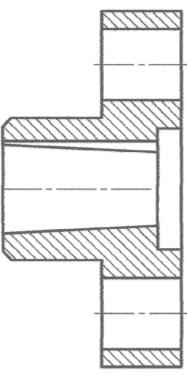

ские следующих размеров:

Модуль 1-8 Ø до 120 мм L (длина) до 400 мм

Полумуфты

Муфта — устройство, предназначенное для соединения друг с другом концов валов, а также валов и свободно сидящих на них деталей. Муфта передаёт механическую энергию без изменения её величины.

Муфта состоит из двух симметричных (гораздо реже – ассиметричных) частей, называемых полумуфта.

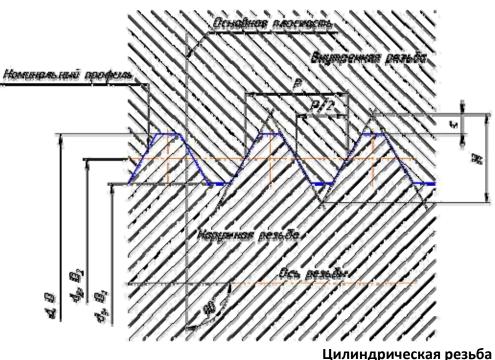

Группы полумуфт (механические):

- 1. Жёсткие (глухие) полумуфты:
 - втулочные (по ГОСТ 24246-80);
 - фланцевые (по ГОСТ 20761-96);
 - продольно-свёртные (по ГОСТ 23106-78).
- 2. Компенсирующие полумуфты компенсируют радиальные, осевые и угловые смещения валов:
 - шарнирные муфты угловое смещение до 45° (по ГОСТ 5147-80)
 - зубчатые;
 - цепные (по ГОСТ 20742-93).

- 3. Упругие полумуфты компенсация динамических нагрузок:
 - муфты с торообразной оболочкой (по ГОСТ 20884-93);
 - втулочно-пальцевые (по ГОСТ 21423-93);
 - муфты со звёздочкой (по ГОСТ 14084-93).
- 4. Сцепные полумуфты соединение или разъединение валов или валов с установленными на них деталями.
 - муфты кулачково-дисковые (по ГОСТ 20720-93);
 - фрикционные.
- 5. Самоуправляемые (автоматические) полумуфты:
 - обгонные муфты передача вращения только в одном направлении;
 - центробежные ограничение частоты вращения;
 - предохранительные муфты ограничение передаваемого момента (с разрушающимся элементом и автоматические).

Существуют также: *гидравлическая муфта* (гидродинамическая муфта), электро-магнитная и магнитная и т. д. Гидравлическая муфта — устройство, в котором
валы физически не связаны, передача механической энергии происходит под действием потока рабочей жидкости (масла) от насосного колеса к турбинному колесу. Особенность гидравлической муфты в том, что она
ограничивает максимальный момент, сглаживает пульсации, устраняет перегрузку двигателя при пуске и разгоне. Электро-магнитная и магнитная муфта — валы также физически не связаны, кроме того она позволяет передавать механическую энергию через герметическую стенку *абсолютно* без утечек. Одно из применений в центробежных насосах для перекачки опасных жидкостей.

Наше предприятие изготавливает полумуфты диаметром до 630 мм.



Резьба

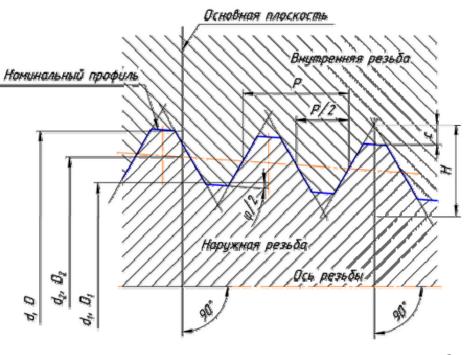
Резьба — равномерно расположенные выступы или впадины постоянного сечения, образованные на боковой цилиндрической или конической поверхности по винтовой линии с постоянным шагом. Является основным элементом резьбового соединения, винтовой передачи и червяка зубчато-винтовой передачи.

Классификация и основные признаки резьбы

- измерения шага (метрическая, единица дюймовая, модульная, питчевая резьба)
- расположение на поверхности (внешняя и внутренняя резьба)
- направление движения винтовой поверхности (правая, левая);
- число заходов (одно- и многозаходная), например двузаходная, трёхзаходная и т. д.;
- профиль (треугольный, трапецеидальный, прямоугольный, круглый и др.);
- образующая поверхность на которой расположена резьба (цилиндрическая резьба и коническая резьба);

назначение (крепёжная, крепёжно-уплотнительная, ходовая и др.).

Основные параметры резьбы и единицы измерения


Метрическая резьба - с шагом и основными параметрами резьбы в долях *метра*.

Дюймовая резьба - все параметры резьбы выражены в дюймах, шаг резьбы в долях дюйма (дюйм = 25,4 мм). Для трубной дюймовой резьбы размер в дюймах характеризует условно просвет в трубе, а наружный диаметр, на самом деле, существенно больше.

Метрическая и дюймовая резьба применяется в резьбовых соединениях и винтовых передачах.

 $Moдульная \ pезьба - шаг pезьбы измеряется модулем (m). Чтобы получить paзмер в миллиметрах достаточно модуль умножить на число пи <math>(\pi)$.

Питичевая резьба - шаг резьбы измеряется в питчах (р"). Для получения числового значения (в милиметрах) достаточно питч умножить на число пи (π) .

Коническая резьба

Модульная и питчевая резьба применяется при нарезании червяка червячной передачи. Профиль витка модульного червяка может иметь вид *архимедовой спирали*, *эвольвенты окружности*, *удлинённой или укороченной эвольвенты* и *трапеции*.

- шаг (Р) расстояние между одноимёнными боковыми сторонами профиля, измеряется в долях метра, в долях дюйма или числом ниток на дюйм это знаменатель обыкновенной дроби, числитель которой является дюймом. Выражается натуральным числом (например; 28, 19, 14, 11);
- наружный диаметр (D, d), диаметр цилиндра, описанного вокруг вершин наружной (d) или впадин внутренней резьбы (D);
- средний диаметр (D₂, d₂), диаметр цилиндра, образующая которого пересекает профиль резьбы таким образом, что её отрезки, образованные при пересечении с канавкой, равны половине номинального шага резьбы;
- внутренний диаметр (D₁, d₁), диаметр цилиндра, вписанного во впадины наружной (d₁) или вершины внутренней резьбы (D₁);
- ход (P_h) величина относительного перемещения исходной средней точки по винтовой линии резьбы на угол 360°

$$P_h = P \times n$$

где n- число заходов;

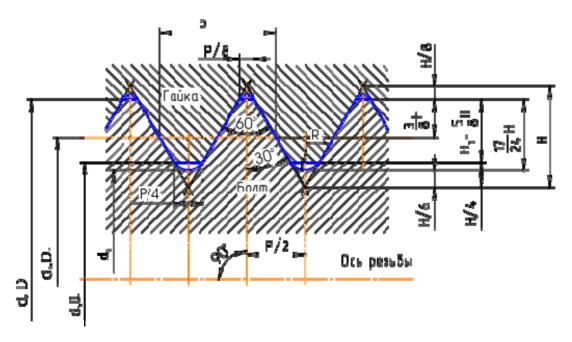
высота исходного треугольника резьбы (Н);

срез резьбы (р);

угол конуса конической резьбы (ф);

угол подъёма резьбы (ψ):

$$\operatorname{tg}\psi = \frac{P_h}{(\pi \times d_2)}.$$


Типы резьбы

В современной механике принято различать:

Метрическая резьба, М

Имеет широкое применение с номинальным диаметром от 1 до 600 мм и шагом от 0,0075 до 6 мм. Профиль равносторонний треугольник (угол при вершине 60°) с теоретической высотой профиля H=0,866025404P. Все параметры профиля измеряются в долях метра (миллиметрах).

Условное обозначение: буква М (metric), числовое значение номинального диаметра резьбы (d, D на схеме, оно же внешний диаметр резьбы на болте) в миллиметрах, числовое значение шага (для резьбы с мелким шагом) (Р на схеме) и буквы LH для левой резьбы. Например, резьба

с номинальным диаметром 16 мм с крупным шагом обозначается как М16; резьба с номинальным диаметром 36 с мелким шагом 1,5 мм - M36x1,5; такая же по диаметру и шагу но левая резьба M36x1,5LH.

Метрическая коническая резьба, МК

Конусность 1:16 (угол конуса φ=3°34'48"). Предназначена для обеспечения герметичности и стопорения резьбы без применения дополнительных средств. Существует два варианта резьбового конического соединения: коническая наружная резьба с конической внутренней резьбой и коническая наружная резьба с цилиндрической внутренней резьбой.

Условное обозначение: буквы МК, числовое значение номинального диаметра резьбы в миллиметрах, числовое значение шага, буквы LH для левой резьбы. Например, резьба с номинальным диаметром 24 мм с шагом 1,5 обозначается как, *МК* 24x1,5.

Метрическая резьба, МЈ

Цилиндрическая резьба основана на метрической резьбе (M) с номинальным диаметром от 1,6 до 200 мм и углом профиля при вершине 60°, предназначена для аэрокосмической техники и других применений требующих высокую усталостную прочность и жаропрочность. Для обеспечения этих свойств впадина резьбы на наружной резьбе имеет увеличенный радиус от 0.15011P до 0.180424P. Внутренняя резьба M совместима с внешней резьбой M, при совпадении номинального диаметра и шага.

Условное обозначение: буквы МЈ, числовое значение номинального диаметра резьбы в миллиметрах, числовое значение шага, поле допуска среднего диаметра и поле допуска диаметра выступов. Например, наружная резьба с номинальным диаметром 6 мм, шагом 1 мм, полем допуска среднего диаметра 4h и полем допуска диаметра выступов 6h обозначается как, *МЈ6х1—4h6h*.

Трубная цилиндрическая резьба, G

Дюймовая резьба основанная на резьбе *BSW* (*British Standard Whitworth*) и соответствует резьбе *BSP* (*British standard pipe thread*), имеет четыре значения шагов 28,19,14,11 ниток на дюйм. Угол профиля при вершине 55°, теоретическая высота профиля H=0,960491P.

Условное обозначение: буква G, числовое значение номинального диаметра резьбы в дюймах (inch), класс точности среднего диаметра (A, B), и буквы LH для левой резьбы. Например, резьба с номинальным диаметром 1 1/8", класс точности A — обозначается как: G1 1/8"-A.

Следует иметь в виду, что номинальный размер резьбы соответствует просвету трубы в дюймах. Наружный диаметр трубы находится в некоторой пропорции с этим размером.

Трубная коническая резьба, R

Дюймовая резьба с конусностью 1:16 (угол конуса ϕ =3°34'48"). Угол профиля при вершине 55°, теоретическая высота профиля H=0,960491P.

Условное обозначение: буква R для наружной резьбы и Rc для внутренней, числовое значение номинального диаметра резьбы в дюймах (inch), буквы LH для левой резьбы. Например, резьба с номинальным диаметром 1 1/4" - обозначается как: R1 1/4".

Круглая резьба для санитарно-технической арматуры, Кр

Профиль круглой резьбы образован окружностями, на вершинах и впадинах, соединёнными прямыми с углом профиля при вершине 30°. Резьба применяется для шпинделей, вентилей, смесителей, туалетных и водопроводных кранов.

Трапецеидальная резьба, Тг

Метрическая резьба с углом профиля при вершине 30°, теоретическая высота профиля H=0,866P.

Условное обозначение однозаходной резьбы: буква Tr (trapezoidal), числовое значение номинального диаметра резьбы в миллиметрах, числовое значение шага, буквы LH для левой резьбы и обозначение поля допуска. Например, однозаходная наружная резьба с номинальным диаметром 50 мм с шагом 8 мм обозначается как, Tr50x8-7e; такая же по диаметру и шагу но левая резьба Tr50x8LH-7e.

Условное обозначение многозаходной резьбы: буква Tr (trapezoidal), числовое значение номинального диаметра резьбы в миллиметрах, числовое значение хода, в скобках P с числовым значением шага, буквы LH для левой резьбы и обозначение поля допуска среднего диаметра (допуск 4h и 4H в условном обозначении не ставится). Например, многозаходной наружная резьба с номинальным диаметром 20 мм с ходом 8 мм и шагом 4 мм обозначается как, Tr20x8 (P4)-7e; такая же по диаметру и шагу но левая резьба Tr50x8LH-7e.

Упорная резьба, S

Метрическая резьба с углом наклона боковых сторон профиля 30° и 3°.

Условное обозначение многозаходной резьбы: буква S, числовое значение номинального диаметра резьбы в миллиметрах, числовое значение хода, в скобках P с числовым значением шага, буквы LH для левой резьбы и обозначение поля допуска.

Упорная усиленная резьба, S45°

Метрическая резьба с углом наклона боковых сторон профиля 45° и 3°, с номинальным диаметром от 80 до 2000 мм. Условное обозначение резьбы: буква S, значение угла 45°, числовое значение номинального диаметра резьбы в миллиметрах, числовое значение шага, буквы LH для левой резьбы и обозначение Тт.

Резьба Эдисона круглая, Е

Применяется для электротехнических изделий, например цоколь ламп накаливания.

Условное обозначение резьбы: Буква E, номер резьбы, если резьба для неметаллических элементов буква N через наклонную черту (/) и номер ГОСТа, например E 27 ГОСТ 6042-83 или E 27/N ГОСТ 6042-83.

Резьба Eg M

Резьбовые отверстия под проволочные резьбовые вставки для метрических резьб. Применяется в качестве усиления несущей способности резьбы или (и) ремонт повреждённой резьбы в теле детали.

Резьба UTS (Unified Thread Standard)

Дюймовая широко распространённая резьба в США угол при вершине 60°, теоретическая высота профиля H=0,866025P. В зависимости от шага подразделяется на: UNC (Unified Coarse); UNF (Unified Fine); UNEF (Unified Extra Fine); 8UN; UNS (Unified Special).

Резьба BSW (British Standard Whitworth)

Дюймовая резьба является Британским стандартом предложена Джозефом Витуортом (Joseph Whitworth) в 1841 угол при вершине 55°, теоретическая высота профиля H=0,960491P. Резьба с мелким шагом называется: BSF (British Standard Fine)

Резьба NPT (National pipe thread)

Стандарт ANSI/ASME B1.20.1 дюймовой трубной присоединительной резьбы. Конусной (*NPT*) с конусностью 1:16 (угол конуса ϕ =3°34'48") или цилиндрической (*NPS*). Угол профиля при вершине 60°, теоретическая высота профиля H=0,866025P.

Стандарт предусматривает размеры резьбы от 1/16" до 24" для труб по стандартам ANSI/ASME B36.10M, BS 1600, BS EN 10255 и ISO 65.

Резьбы нефтяного сортамента

Резьбы нефтяного сортамента предназначены для соединения труб в нефтяных скважинах. Являются коническими для обеспечения высокой герметичности. По форме профиля бывают треугольные, с углом профиля 60°, и трапецеидальные неравнобочные, с углами от 3° до 30° (так называемая резьба Батресс). Резьбы нефтяного сортамента в основном выполняются в соответствии со стандартами Американского института нефти (API).

Способы изготовления

Применяются следующие способы получения резьбы:

- лезвийная обработка резанием;
- абразивная обработка;
- накатывание;
- выдавливание прессованием;
- литье;
- электрофизическая и электрохимическая обработка.

Наиболее распространенным и универсальным способом получения резьб является лезвийная обработка резанием. К ней относятся:

- нарезание наружной резьбы плашками;
- нарезание внутренней резьбы метчиками;
- точение наружной и внутренней резьбы резьбовыми резцами и гребенками;
- резьбофрезерование наружной и внутренней резьбы дисковыми и червячными фрезами;
- нарезание наружной и внутренней резьбы резьбонарезными головками;
- вихревая обработка наружной и внутренней резьбы.

Накатывание является наиболее высокопроизводительным способом обработки резьбы, обеспечивающим высокое качество получаемой резьбы. К накатыванию резьбы относятся:

- накатывание наружной резьбы двумя или тремя роликами с радиальной, осевой или тангенциальной подачей;
- накатывание наружной и внутренней резьбы резьбонакатными головками;
- накатывание наружной резьбы плоскими плашками;
- накатывание наружной резьбы инструментом ролик-сегмент;
- накатывание (выдавливание) наружной резьбы бесстружечными метчиками.

К абразивной обработке резьбы относится шлифование однониточными и многониточными кругами. Применяется для получения точной, в основном ходовой резьбы.

Выдавливание прессованием применяется для получения резьбы из пластмасс и цветных сплавов. Не нашло широкого применения в промышленности.

Литье (обычно под давлением) применяется для получения резьбы невысокой точности из пластмасс и цветных сплавов.

Электрофизическая и электрохимическая обработка (например, электроэрозионная) применяется для получения резьб на деталях из материалов с высокой твердостью и хрупких материалов, например твердых сплавов, керамики и т.п.

Историческая справка

Идеи применения винтовых поверхностей в технике выдвигались еще Архимедом. Однако, широкое применение ходовые и крепежные резьбы нашли лишь в средневековье. Изготовление наружной резьбы происходило следующим образом: на цилиндрическую заготовку наматывалась смазанная мелом или краской веревка, за-

тем по образовавшейся спиральной разметке нарезалась винтовая канавка. Вместо гаек со внутренней резьбой использовались втулки с двумя или тремя штифтами.

В XV - XVI веках началось изготовление трех- и четырехгранных метчиков для нарезания внутренней резьбы. Обе сопрягаемые детали с наружной и внутренней резьбой для свинчивания подгонялись друг под друга вручную. Какая-либо взаимозаменяемость деталей полностью отсутствовала.

Предпосылки к взаимозаменяемости и стандартизации резьбы были созданы Генри Модсли (*Henry Maudslay*) приблизительно в 1800 г., когда изобретенный им токарно-винторезный станок сделал возможным нарезание точной резьбы. В течение следующих 40 лет взаимозаменяемость и стандартизация резьб имели место лишь внутри отдельных компаний. В 1841 г. Джозеф Витворт (*Joseph Whitworth*) создал резьбу, которая, благодаря принятию ее многими английскими железнодорожными компаниями, стала национальным стандартом для Великобритании, названным британским стандартом Витворта (*BSW*). Стандарт Витворта послужил основой для создания различных национальных стандартов, например стандарта Селлерса (*Sellers*) в США, резьбы Лёвенхерц (*Löwenherz*) в Германии и т.д.

Эти стандарты были объединены в 1898 г. Международным Конгрессом по стандартизации резьбы в Цюрихе, который определил новые международные стандарты метрической резьбы на основе резьбы Селлерса, но с метрическими размерами.

В 1947 была основана Международная Организация по Стандартизации (*ISO*). Стандарты резьбы *ISO* в настоящее время являются общепринятыми во всем мире, в том числе и в Украине.

Средства механизации и приспособления

Покупая оборудование, Вы стремитесь получить максимальную функциональность. Вместе с тем Вы не хотите переплачивать за неиспользуемые опции или возможности, которые Вам никогда не понадобятся. Мы предлагаем Вам разработать и произвести такой станок или механизм, который будет соответствовать только Вашим пожеланиям и, одновременно, удовлетворит все Ваши потребности. Наши сертифицированные проекты отличаются высоким качеством исполнения и отличной эргономикой.

Мы производим:

- Пилорамы
- Станки распиловочные по камню и дереву
- Металлорежущее оборудование
- Станки для шлифовки камня
- Деревообрабатывающие станки
- Торцовочные станки
- Оборудование для производства сетки
- Станки для гибки труб и металла
- Строительные и шахтные подъёмники
- Транспортёры и конвейеры
- Автоматизированные и ручные лебёдки
- Шлагбаумы с противоугонным механизмом
- Сельскохозяйственная техника
- Средства промышленной механизации

Посетите наш сайт на http://www.zno.com.ua/ru/manufacture.html

и узнайте больше о сельскохозяйственной продукции и механизмах, которые мы можем Вам предложить

Несерийное производство и выполняемые работы

В различных условиях и при различным обстоятельствах одно и тоже изделие может служить различным целям. Однако, случается, что универсальный механизм не срабатывает в определённых ситуациях - и тогда есть резон задуматься над альтернативным подходом. Именно в результате профессиональной переработки стандартных схем появляется нестандартизированное оборудование - конструкции и механизмы, призванные в полной мере служить и функционировать в конкретных условиях и для конкретных целей.

Несерийное производство - это целый комплекс технических разработок, направленных на усовершенствование и адаптацию конкретной продукции к специальным условиям и требованиям заказчика. Вам - достаточно изложить идею, всё остальное сделает команда профессионалов предприятия.

Наше предприятие выполняет:

- Долбёжные работы
- Заготовительные работы
- Зубофрезерные работы
- Покрасочные работы
- Порезка и гибка металла
- Расточные работы
- Фрезерные работы
- Шлифовальные работы
- Электромонтажные работы

- Сварочные работы
- Сварочно-слесарные работы
- Слесарные работы
- Строгальные работы
- Термообработка
- Токарные работы

Сталь

Сталь – сплав железа с углеродом (до 2% C). По химическому составу сталь разделяют на углеродистую и легированную. По качеству разделяют на сталь обыкновенно качества, качественную, повышенного качества и высококачественную.

Сталь углеродистую обыкновенно качества подразделяют на три группы:

- A поставляемую по механическим свойствам и применяемую в основном тогда, когда изделия из нее подвергают горячей обработке (сварка, ковка и др.), которая может изменить регламентируемые механические свойства (Ст0, Ст1 и др.);
- Б поставляемую по химическому составу и применяемую для деталей, подвергаемых такой обработке, при которой механические свойства меняются, а уровень их кроме условий обработки определяется химическим составом (БСт0, БСт1 и др.);
- B поставляемую по механическим свойствам и механическому составу для деталей, подвергаемых сварке (ВСт0, ВСт1 и др.).

Сталь углеродистую обыкновенного качества изготовляют следующих марок:

Ст0, Ст1кп, Ст1пс, Ст2кп, Ст2сп, Ст3кп, Ст3сп, Ст3Гпс, Ст3Гсп, Ст4кп, Ст3пс, Ст4сп, Ст5пс, Ст5Гпс, Ст6пс, Ст6сп.

Буквы "Ст" обозначают "сталь", цифры – условный номер марки в зависимости от химического состава, буквы "кп", "пс", "сп" – степень раскисления: кипящая, полуспокойная, спокойная.

Требования к химическому составу стали.

1. Химический состав стали по плавочному анализу ковшовой пробы должен соответствовать нормам:

Морки отоли	Ма	ссовая доля элементов	s, %
Марки стали	углерода	марганца	кремния
Ст0	не более 0,23	-	-
Ст1кп	0,06-0,12	0,25-0,50	не более 0,05
Ст1пс	0,06-0,12	0,25-0,50	0,05-0,15
Ст1сп	0,06-0,12	0,25-0,50	0,15-0,30
Ст2кп	0,09-0,15	0,25-0,50	не более 0,05
Ст2пс	0,09-0,15	0,25-0,50	0,05-0,15
Ст2сп	0,09-0,15	0,25-0,50	0,15-0,30
Ст3кп	0,14-0,22	0,30-0,60	не более 0,05
Ст3пс	0,14-0,22	0,40-0,65	0,05-0,15
Ст3сп	0,14-0,22	0,40-0,65	0,15-0,30
Ст3Гпс	0,14-0,22	0,80-1,10	не более 0,05
Ст3Гсп	0,14-0,20	0,80-1,10	0,15-0,30
Ст4кп	0,18-0,27	0,80-1,10	не более 0,05
Ст4пс	0,18-0,27	0,80-1,10	0,05-0,15
Ст4сп	0,18-0,27	0,80-1,10	0,15-0,30
Ст5пс	0,28-0,37	0,50-0,80	0,05-0,15
Ст5сп	0,28-0,37	0,50-0,80	0,15-0,30
Ст5Гпс	0,22-0,30	0,80-1,20	не более 0,05
Ст6пс	0,38-0,49	0,50-0,80	0,05-0,15
Ст5сп	0,38-0,49	0,50-0,80	0,15-0,30

2. В стали марки Ст0 массовая доля марганца, кремния, хрома, никеля, меди, мышьяка не нормируется.

Сталь углеродистая качественная конструкционная по видам обработки при поставке делится на:

- горячекатаная и кованая;
- калиброванная;
- круглая со специальной отделкой поверхности серебрянка.

Примерное назначение углеродистой качественной конструкционной стали:

08кп	Детали, изготовляемые холодной штамповкой и холодной высадкой, трубки, прокладки, кре- пеж, колпачки. Цементируемые и цианируемые детали, не требующие высокой прочности сердцевины
	(втулки, валики, упоры, зубчатые колеса, фрикционные диски).
20	Малонагруженные детали (валики, пальцы, упоры, копиры, оси, шестерни). Тонкие детали,
20	работающие на истирание, рычаги, крюки, траверерсы, вкладыши, болты, стяжки и др.
30	Детали, испытывающие небольшие напряжения (оси, шпиндели, звездочки, тяги, траверсы,
	рычаги, диски, валы).
45	Детали, от которых требуется повышенная прочность (коленчатые валы, шатуны, зубчатые
	венцы, распределительные валы, маховики, зубчатые колеса, шпильки, храповики, плунже-
	ры, шпиндели, фрикционные диски, оси, муфты, зубчатые рейки, прокатные валики и др.).

Легированную сталь по степени легирования разделяют:

- низколегированная (легирующих элементов до 2,5%);
- среднелегированная (от 2,5% до 10%);
- высоколегированная (от 10% до 50 %).

Примерное назначение низколегированных тонколистовой и широкополосной универсальной сталей.

09Г2	Для деталей сварных конструкций, изготовляемых из листов. Обрабатывается резанием удовлетворительно.
09Г2С	Для паровых котлов, аппаратов и емкостей, работающих под давлением при температуре от - 70°С до +450°С. Для ответственных листовых сварных конструкций в химическом и нефтяном машиностроении, судостроении. Хорошо свариваются. Обрабатывается резанием удовлетворительно.
10ХСНД	Для сварных конструкций химического машиностроения, фасонных профилей в судостроении, вагоностроении.
15ХСНД	Для деталей вагонов, строительных свай, сложных профилей в судостроении. Обладает повышенной коррозионной стойкостью.

Легированные конструкционные стали.

В соответствии с ГОСТ 4543-71 наименования таких сталей состоят из цифр и букв. Буквы указывают на основные легирующие элементы, включенные в сталь. Цифры после каждой буквы обозначают примерное процентное содержание соответствующего элемента, округленное до целого числа (при содержании легирующего элемента до 1,5% цифра за соответствующей буквой не указывается). Процентное содержание углерода, умноженное на 10, приводится в начале наименования стали.

Примерное назначение легированной конструкционной стали.

20X	Кулачковые муфты, втулки, шпиндели, направляющие планки, плунжеры, оправки, копиры, шлицевые валики и др.
40X	Для деталей, работающих на средних скоростях при средних давлениях (зубчатые колеса, шпиндели и валы в подшипниках качения, червячные валы).
45X,50X	Для крупных деталей, работающих на средних скоростях при небольших давлениях (зубчатые колеса, шпиндели, валы в подшипниках качения, червячные и шлицевые валы). Обладают высокой прочностью и вязкостью.

Элемент	Обозначение	Элемент	Обозначение
Никель	Н	Фосфор	П
Хром	X	Редкоземельные металлы	Ч
Кобальт	К	Вольфрам	В
Молибден	M	Титан	Т
Марганец	Γ	Азот	Α
Медь	Д	Ванадий	Ф
Бор	Р	Алюминий	Ю
Ниобий	Б	Селен	E
Цирконий	Ц		
Кремний	С		

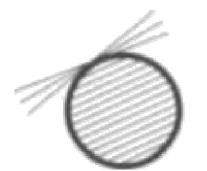
Марки строительных сталей по действующей нормативно-технической документации.

Наименование стали	Марка стали	Обозначение стандарта
C235	Ст3кп2	ДСТУ 2651-94 (ГОСТ 380-94) ГОСТ 535-88
C245	Ст3пс5	ДСТУ 2651-94 (ГОСТ 380-94). ГОСТ 535-88
C245	Ст3спб	ДСТУ 2651-94 (ГОСТ 380-94), ГОСТ 535-88
C255	Ст3Гпс. Ст3Гсп	ДСТУ 2651-94 (ГОСТ 380-94)
C275	Ст3пс	ДСТ- 2651-94 ГОС І 580-94)
C285	Ст3сп Ст3Гпс. Ст2Гсп	ДСТУ 2651-94 (ГОСТ 380-441
C345	12Γ2C	
U340	09Γ2C	ΓΟCT 19282-73

Маркировка продукции.

Для маркировки продукции используют краску цветов, приведенных ниже в таблице:

Марки стали	Цвета маркировки
СтО	Красный и зеленый
Ст1	Желтый и черный
Ст2	Желтый
СтЗ	Красный
Ст3Гпс	Красный и коричневый


Ст3сп	Синий и коричневый		
Ст4	Черный		
Ст5	Зеленый		
Ст5Гпс	Зеленый и коричневый		

Прокат сортовой и фасонный из стали углеродистой обыкновенного качества ГОСТ 535-88.

Настоящий стандарт распространяется на горячекатаный сортовой и фасонный прокат общего и специального назначения из стали углеродистой обыкновенного качества.

Прокат разделяется на сортовой и фасонный.

К сортовому относится прокат, у которого касательная к любой точке контура поперечного сечения данное сечение не пересекает. К фасонному относится прокат, у которого касательная хотя бы к одной точке контура поперечного сечения данное сечение пересекает.

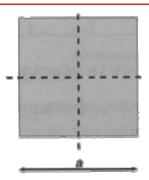
	COPTOBL	И И ФАСОННЫЙ ПРОКАТ			
Сортовый прокат:		Фасонный прокат:	Фасонный прокат:		
Катанка		Арматура	E		
Квадрат		Балка	I		
Круг		Уголок	L		
apyi		Швеплер			
Полоса	<u> </u>	Рельс	Ŷ		
Шестигранник		Спец. проф.			

Прокат стальной горячекатаный квадратный. Сортамент.

ГОСТ 2591-88 - Настоящий стандарт распространяется на стальной горячекатаный прокат квадратного сечения с размером сторон от 6 мм до 200 мм.

- 1. По точности прокат изготовляют:
 - Б повышенной точности;
 - В обычной точности.
- 2. Стороны квадратного проката, площадь поперечного сечения и масса 1 м проката должны соответствовать указанным на чертеже и в таблице.

тел.: (0412) 44-72-97 | факс: (0412) 34-32-98 | www.zno.com.ua

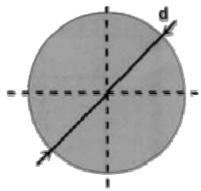

а - сторона квадрата

Масса проката квадратного сечения $M_{\text{квадрата}}$ определяется по формуле:

$$M_{\text{квадрата}} = L \cdot \gamma_{\text{уд'}}$$

где L - длина проката квадрата прокатного сечения, м;

Ууд - теоретическая масса 1м проката квадратного сечения.

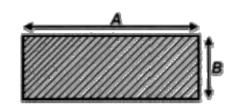


Прокат стальной горячекатаный круглый. Сортамент.

ГОСТ 2590-88 - Настоящий стандарт распространяется на стальной горячекатаный прокат круглого сечения диаметром от 5 мм до 270 мм включительно.

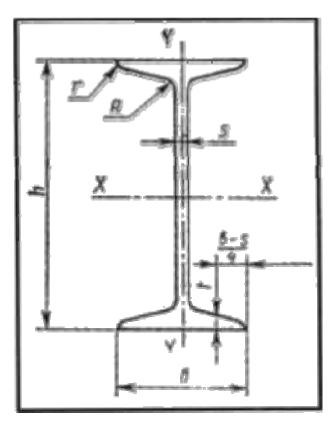
- 1. По точности прокат изготовляют:
 - А высокой точности;
 - Б повышенной точности;
 - В обычной точности.
- 2. Диаметр проката, площадь поперечного сечения и масса 1 м длины должны соответствовать указанным на чертеже и в таблице.

d - диаметр круга
 Масса круга М круга определяется по формуле:
 М круга = L • Ууд' (кг), где L - дпина круга, м;
 Ууд - теоретическая масса 1м круга. (кг/м)


Полоса стальная горячекатаная. Сортамент.

- 1. Настоящий стандарт распространяется на стальную горячекатаную полосу общего назначения и стальную полосу для гаек шириной от 11 мм до 200 мм и толщиной от 4 мм до 60 мм.
- 2. По точности прокатки полосы изготовляют:
 - А повышенной точности;
 - Б нормальной точности.
- 3. Поперечное сечение, толщина, ширина и масса 1м полосы должны соответствовать указанным на чертеже и в таблице.

Масса проката квадратного сечения M полосы определяется по формуле: $M_{\text{полосы}} = L \cdot \gamma_{\text{уд}}$


где 🕹 - длина полосы, м;

Ууд - теоретическая масса 1м полосы.

Двутавры стальные горячекатаные. Сортамент.

FOCT 8239-89

Настоящий стандарт устанавливает сортамент горячекатаных стальных двутавров с уклоном внутренних граней полок. Поперечное сечение двутавров должно соответствовать указанному на чертеже.

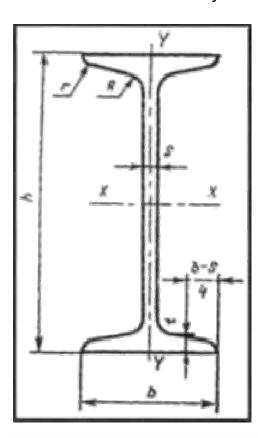
h - высота двутавра;

b - ширина полки;

s - толщина стенки;

f - средняя толщина полки;

R - радиус внутреннего закругления;


r - радиус закругления полки

Примечание. Уклон внутренних граней полок должен быть 6-12 %.

Балки двутавровые стальные специальные. Сортамент.

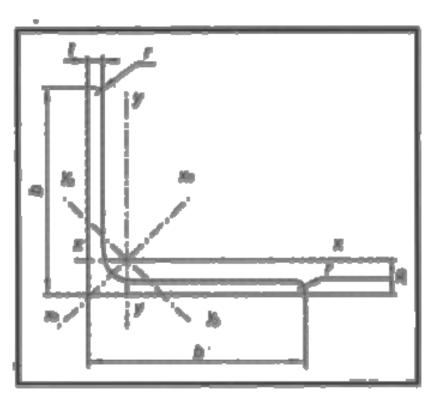
ΓΟCT 19425-74

- 1. Настоящий стандарт распространяется на горячекатаные двутавровые балки для подвесных путей (M) и армировки шахтных стволов (C).
- 2. Форма, размеры балок, площадь поперечного сечения, масса 1 м и справочные величины должны соответствовать указанным на чертеже и в таблице.

Примечание.

Уклон внутренних граней полок должен быть не более:

для балок M - 12%; для балок C - 16%.


Условные обозначения к чертежу и таблице:

- h высота;
- о ширина полки;
- s толщина стенки;
- t средняя толщина полки;
- R радиус внутреннего закругления;
- г радиус закругления полки;
- I момент инерции;
- W момент сопротивления;
- S статический момент полусечения;
- і радиус инерции.

Уголки стальные горячекатаные равнополочные. Сортамент.

ДСТУ 2251-93 (ГОСТ 8509-93)

- 1. Настоящий стандарт распространяется на уголки горячекатаные равнополочные.
- 2. Размеры уголков,площадь поперечного сечения,справочные величины для осей и масса 1 м должны соответствовать указанным в чертеже и приведенным в таблице.

Условные обозначения к чертежу в таблице:

b - ширина полочки;

t - толщина полочки;

R - радиус внутреннего закругления;

г - радиус закругления полочек;

F - площадь поперечного сечения;

I - момент инерции;

хо - расстояние от центра до внешней грани полочки;

Іху- усредненный момент инерции; і - радиус инерции.

Уголки изготовляют: высокой точности (А) и обычной точности (В).

Контактные данные

Завод нестандартизированного оборудования

Садовая улица, строение 12-а пос. Олиивка, Житомирская обл. 12402, Украина (UA)

тел.: +38 (0412) 447-297 тел.: +38 (0412) 460-940 факс: +38 (0412) 343298

e-mail: info@zno.com.ua
Internet: www.zno.com.ua

ICQ: <u>243469036</u> Skype: <u>555-05-05</u>

Больше полезной информации http://www.zno.com.ua

д нестандартизированного оборудования эниверсал	1611 (0412) 44-72-97 факс. (0412) 34-32-96 www.zho.com.ua
Заметки	

Заметки

од нестандартизированного оборудования эниверсал	1611 (0412) 44-72-97 факс. (0412) 34-32-96 www.zho.com.ua
Заметки	